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AsstracT The notion that rates of replacement of an old grammatical op-
tion by a new one are identical across linguistic contexts during a period of
change (the Constant Rate Hypothesis, CRH) has attracted considerable at-
tention in the historical syntax literature. Here, I argue that any inferences
made about change processes using models of the constancy or variability
of rates of change must be conducted in a way that balances three consid-
erations: (i) empirical fit, (ii) model complexity and (iii) ontological inter-
pretability of model parameters. Five models involving constant or variable
rates of change are examined with respect to three datasets with the help
of the Akaike Information Criterion in an effort to explore how model se-
lection can be carried out rigorously. Although this technique balances em-
pirical fit and model complexity in a principled manner, thus offering an
improvement over the statistical methods traditionally used in the examina-
tion of constancy of rates of change, it cannot weed out models which fail
the criterion of ontological interpretability. I argue that such models should
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be excluded from consideration on a priori grounds. What remains can be
termed ‘speaker models’: mechanistic models whose components have in-
terpretations in terms of the representation of knowledge of language and
language use. Whether the CRH is such a model or can be derived from one
remains an open question.

1 MoOTIVATION

There are arguably very few general, quantitative nomothetic statements in
historical syntax; fewer still have been subjected to empirical scrutiny with
the help of statistical modelling techniques. The Constant Rate Hypothesis
(CRH) is one such statement:

when one grammatical option replaces another with which it
is in competition across a set of linguistic contexts, the rate of
replacement, properly measured, is the same in all of them.
(Kroch 1989: 200)

In the more than three decades since its introduction, the CRH has been ex-
plored, tested, broached, critiqued and reinterpreted in a number of studies
(e.g. Santorini 1993, Ball 1994, Pintzuk 1995, Wagner 1996, Frisch 1997, Taglia-
monte & Hudson 1999, Cukor-Avila 2002, Pintzuk & Taylor 2006, Sundquist
2006, Kallel 2007, Sundquist 2007, Tagliamonte & D’Arcy 2007, von Heusinger
2008, Wallage 2008, Postma 2010, Paolillo 2011, Durham, Haddican, Zweig,
Johnson, Baker, Cockeram, Danks & Tyler 2012, Fruehwald, Gress-Wright &
Wallenberg 2013, Wallage 2013, Corley 2014, Ecay 2015, Gardiner 2015, Ba-
covcin 2017, Postma 2017, Kauhanen & Walkden 2018, Simonenko, Crabbé
& Prévost 2019, Wallenberg, Bailes, Cuskley & Ingason 2021, Zimmermann
2022).

The above quotation famously leaves open what it means to properly mea-
sure a rate of change in language. In practice, some operationalization of
change in mathematical terms is necessary if the hypothesis is to be put to em-
pirical test or application. Kroch (1989) recommended characterizing change
using the logistic function, which allows the researcher to condense the no-
tion of rate of change into a single number, namely the slope parameter of
that function. This yields the following rational reconstruction of the CRH:

(1) If (P) anumber of linguistic contexts 1, ..., m are observed to change,

and (Q) all those m developments occur because of a change in a
single, underlying grammatical option,
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then (R) fitting a logistic model to the m contexts yields no evidence
that the slope parameter is different from one context to another.

For ease of reference, let us refer to this conditional statement (P & Q — R)
as proposition C.

On the face of it, the logic here allows at least three different kinds of in-
vestigations. First, it is possible to assume that the conditional C holds and
that the premise P is observationally true. Then, if sufficient quantitative evi-
dence can be adduced to suggest that R is false, it follows that Q must be false,
too. In other words, assuming that the CRH is true allows one to show that a
set of observed changes are not tied to a single underlying grammatical option
or parameter.! Secondly, if C and P are assumed to hold and sufficient evi-
dence is adduced to suggest that R holds, it is possible to regard Q—although
not as strictly true—as receiving a degree of ‘corroboration’ (Popper 1959) to
the extent that repeated attempts at its falsification continue to fail. Finally,
if the truth of both P and Q can be taken for granted in some particular in-
stance of change, it is possible to attempt to corroborate or refute the CRH
(the statement C) itself, by estimating the truth value of R.

In practice, serious difficulties of measurement and inference arise in any
such undertaking. The majority of existing studies on the CRH have focused
on relatively old changes, forcing them to rely on corpora in which problems
of sample size and sample quality—for instance, uncertainty relating to the
dating of texts, or manifest imbalances in terms of register or geographical
area—are implicated. In other cases, problems may arise from the fact that the
observations are not plausibly independent, as required by the usual statisti-
cal treatments. A serious problem of inference arises also from the fact that
the commonly used statistical technique for evaluating the truth of proposi-
tion R takes (in fact, has to take) the CRH as the null hypothesis of the sta-
tistical inference situation. However, failure to reject a null is never conclu-
sive evidence of the truth of that null, a problem that casts potentially serious
doubt over many existing studies of the CRH (Paolillo 2011).

A further challenge concerns the precise status of the CRH as a theoret-
ical statement. The hypothesis assumes underlying grammatical unity to be
reflected as identity of rates of change—that P and Q imply R. Yet it is not en-
tirely clear why this should be so: the conditional C would appear to present
no mechanism whereby the identity of rates of change could be reduced back
to first principles (cf. Kauhanen & Walkden 2018). The following is at least
conceivable: perhaps the central intuition behind the CRH—that underlying

1 Strictly speaking, this assumes that no auxiliary assumptions with uncertain truth values are
involved, a situation that rarely if ever obtains in a scientific investigation (the Duhem—-Quine
problem; see Harding 1976).
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parametric unity ought to be reflected in some regular observable pattern in
the diachronic record—is true, but identity of rates of change happens not to
be that pattern (see also Kallel 2007).

Reflecting on these issues, in this paper I argue that diachronic linguistics
needs to consider not just statistical models but also speaker models—mecha-
nistic models of linguistic knowledge representation and language use. I also
ask to what extent the CRH can be regarded as such a model. Concretely,
I will consider three interpretations of the CRH, Kroch’s (1989) original op-
erationalization as a set of logistics, Kallel’s (2007) extended model which
includes an additional quadratic term to account for constant curvature, and
Kauhanen & Walkden’s (2018) model which attempts to derive the CRH from
probabilistic production biases applied to underlying grammar probabilities
learned in first-language acquisition; these models are further joined by two
variable-rate models as implementations of the negation of the CRH. The
models will be fit to three datasets from the existing literature; to avoid incur-
ring type Il errors at unknown rates (Paolillo 2011), an information-theoretic
model selection procedure which balances model fit and model complexity
(Burnham & Anderson 2002) is adopted instead of the standard null hypoth-
esis testing framework. I will argue that the best model in any given case will
tend to optimize three criteria simultaneously: (i) empirical fit, (ii) theoreti-
cal parsimony and (iii) ontological interpretability of key model parameters.
An improved method for fitting the non-traditional model of Kauhanen &
Walkden (2018) emerges as a side product of these investigations.

The models to be studied are introduced in §2; the problem of model se-
lection is discussed in §3. The case studies from which the datasets of the
empirical investigations are taken are summarized briefly in §4. Results are
presented in §5 and discussed in §6-7. Technicalities are collected in the ap-
pendices A-C.

2 SPEAKER MODELS

The classical formulation of the CRH characterizes linguistic changes using
logistic curves: formally, the probability of one of two possible grammatical
options involved in the change in context ¢ = 1, ..., m satisfies

exp(s.t + k.)

2) ple.t) = 1+ exp(s.t +k.)

where t is time, s, is slope (rate of change) and k. is the intercept (controlling
temporal translation of the curve’s tipping point, the value of the abscissa t at
which the ordinate equals p(c,t) = 0.5). The CRH amounts to the statement
that a unique slope s exists such that s, = s for all contexts c.
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This is, furthermore, equivalent to carrying out a logistic regression with
time, context and the interaction of time and context as explanatory variables:
taking the logit transform of (2) yields

3) log(%> Cs bk, = st+sit 4k
where s is the rate of change common to all contexts and s, = s. — s gives the
strength of the time—context interaction. The CRH amounts to the statement
that s, = 0.

Interpreted as a statistical model, this is simply a statement about the
likely values of a handful of parameters of a function used to describe a set of
data. If the goal of language science is to explain and predict the behaviour
of speakers—speaker here used as a convenient shorthand for ‘cognitive agent
with knowledge of language’—then a further step must be taken: either the
parameters of the model must be given interpretations in terms of the ontol-
ogy of the speaker, or else it must be shown how the statistical model can
be obtained (ideally, deductively derived) from a substantive, mechanistic
model.

If the first route is taken, then the implication is that speakers in fact im-
plement quantities such as s, s, and k.. The CRH and its negation become
statements such as (4) and (5), respectively:

(4) The speaker has a single s, applied to each context, and variable k,
(5) The speaker has variable s. and k,

When constructing the probability of use of the grammatical option at time ¢
in context ¢, in other words p(c, t), the speaker makes use of these quantities,
arriving at usage frequencies which, when collected over repeated measure-
ments and across multiple speakers, yield the diachronic patterns which the
statistical test taps into.

Alternatively, we may regard the logistic model as a pure statistical model
whose various parameters do not necessarily have real-world interpretations,
atleast not on the level of individual speakers. In the ideal case, it should then
be possible to show how the statistical model follows from some underlying
model of the speaker. Some such intuition motivated the work in Kauhanen
& Walkden (2018), which attempted to derive the CRH from an application
of a set of biases to an underlying probability of employment of the compet-
ing grammatical options. Thus instead of assuming that speakers implement
quantities such as s, and k., this model assumes that the probability of the
grammatical option in context c obeys the equation

(6) plc,t) = P() + b P(H)[1—P(1)]
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where P(t) is an underlying, context-independent representation of the prob-
ability of the grammatical option, while b, is a context-dependent but cru-
cially time-independent bias (satisfying —1 < b. < 1), the probability of
either enhancing or suppressing expression of the grammatical option in this
particular context. The idea is that speakers first acquire P(t) as part of ordi-
nary first-language acquisition and then ‘filter” this knowledge through con-
text-specific knowledge in actual language use with the help of the biases b,.
In Kauhanen & Walkden (2018), the dynamics of such a model were devel-
oped in the special case that P(t) is a logistic, for instance a ‘grammar weight’
along the lines of the variational learning model of Yang (2002), which is
known to predict logistic trajectories under fairly lenient assumptions. This
yields contextual curves p(c, t) which are similar, but not quite equivalent to
a family of equally-sloped logistics.

It is important to highlight the difference between the two approaches,
i.e. between viewing the mathematical equations as statistical descriptions
and viewing them as mechanistic models. In the latter approach, the equa-
tions follow, by mathematical deduction, from a theory which is also ex-
pressed in mathematical terms. In Yang’s (2002) model of variational learn-
ing, for example, the value of P(t), the weight assigned by the speaker to a
grammatical option, either increases or decreases over time. However, this is
not all the model says, for it also supplies a mechanism whereby that weight
either increases or decreases: the linear reward—penalty scheme of Bush &
Mosteller (1955) dictates how individual speakers adjust their behaviour, and
the population-level evolution follows from this via simple assumptions of
intergenerational transmission. In other words, the model is not only a sta-
tistical description of observable longitudinal developments but also a mech-
anistic explanation of how speakers and populations adjust their grammar
weights in response to external stimuli. The diachronic trajectories observ-
able in corpora follow deductively from theoretical first principles, offering a
particularly transparent way of testing the validity of those first principles.

In the particular case of Kauhanen & Walkden’s (2018) model, the con-
ceptual benefits of the move to a mechanistic description include the fact
that a number of contexts are now mathematically tied to one underlying
probabilistic representation, P(t), and that the bias parameters b, can be sub-
sumed under the same probabilistic framework, as they are signed probabili-
ties (positive if the context favours, and negative if it disfavours, the grammat-
ical option). A number of challenges arise too, however, the most important
of which is that it is no longer easy to fit the model to data. Whereas ordinary
binomial regression can be used to fit the original CRH model, no off-the-
shelf solution exists for its bias reinterpretation, which is nonlinear in its pa-
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rameters but is not subsumed under generalized linear models or any similar
family of models. In Kauhanen & Walkden (2018), an iterative least-squares
algorithm was used; its use is somewhat unprincipled, however, particularly
as the method yields no basis on which different models could be rigorously
compared, hence offering no programmatic basis for model selection. In the
following section, I will discuss how these problems can be overcome.

The bias model is not the only reinterpretation of the CRH to have ap-
peared in the literature. In a study of the loss of negative concord in English,
Kallel (2007) observes that a logistic regression model with an additional
quadratic term improves the fit of the model for her dataset:

exp(gct? + st + k)
1+ exp(get? +s.t +k)

(7) plc,t) =

Based on this, she proposes a ‘context constancy principle” according to which
what matters for underlying grammatical unity is that the different contexts
show identical curvature at each time point. This occurs if g and s exist such
that g. = gand s, = s for all c: in effect, a generalized form of the original
CRH. Although the introduction of the quadratic term leads to improved fit
in Kallel’s (2007) case study, the additional term also introduces more model
complexity. This aspect of the generalization is discussed in more detail be-
low.

3 MODEL SELECTION

A researcher interested in the constancy or variability of rates of change in
a particular empirical application faces the following situation. Observed
variation exists between two variants of a linguistic variable. A longitudi-
nal dataset has been obtained consisting of tokens each of which evinces use
of one or the other variant, across a number of contexts. We wish to model the
probability of one of the variants (usually, the historically innovative one) ap-
pearing in context c at time t, p(c, t), on the assumption that the speaker consti-
tutes a Bernoulli random variable. As per the discussion in §2, five models are
available, summarized in Table 1. Proceeding top-down, the first model rep-
resents the classical CRH of Kroch (1989); the second model allows variable
slopes and will be called the Variable Rate Hypothesis (VRH) in what fol-
lows. The next model is Kauhanen & Walkden’s (2018) bias model; this will
also be referred to in the following as the Biased Rate Hypothesis (BRH). The
remaining two models constitute Kallel’s (2007) quadratic extensions of the
original CRH and VRH and will be referred to as the qCRH and the qVRH,
respectively. Table 1 also supplies K, the overall number of parameters for
each model; this will be used as a measure of model complexity.



Model Definition Parameters K

CRH (Kroch 1989) plc,t) = % s,ki, ok, m+1
VRH (Kroch 1989) plc,t) = % PRI U o 2m

BRH (Kauhanen & Walkden 2018) p(c,t) = P(t) + b P(t)[1 — P(t)] s,k by,...,0,, (-1 <b.<1) m+2

_ exp(st+k)
P(t) = 1+exp(st+k)
exp(qt2+st+k,)
qCRH (Kallel 2007) p(C,t) = W q,S,kl,...,km m+ 2
(qet?+s t+k.)
qVRH (Kallel 2007) plc,t) = 1jxef;p"(qc tzj-sc o Q1 ee s Qs S1r e 1 s K1 oo Ko 3m
Table 1 Five models of the probability p(c, t) of expression of a grammatical option in contextc = 1, ..., m at time

t. The rightmost column, K, gives the number of parameters and hence a measure of model complexity
for each model.
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Any rigorous procedure for choosing between competing models of an
empirical phenomenon must strike a balance between over- and underfitting:
an overfitting model is a good fit to a particular dataset but fails to gener-
alize to others, while an underfitting model fails to adequately capture un-
derlying structure in the data (Burnham & Anderson 2002). Multiple ways
of striking this balance exist; some of the conceptually simplest are based on
likelihood maximization and information criteria (for earlier applications of
information criteria to the problem of model selection in the specific context
of the CRH, see Ecay 2015, Bacovcin 2017, Wallenberg et al. 2021). Briefly, the
idea is to calculate the probability of obtaining the observed data assuming a
model and a set of parameter values for that model; the likelihood function
is a function of model parameters that supplies this probability. Maximiz-
ing the likelihood function means finding a combination of parameter values
that maximizes that probability, effectively finding the best possible fit of that
particular model to the data at hand.

Once a maximum of the likelihood function, L, has been found, it is pos-
sible to compute the Akaike Information Criterion

(8) AIC = 2K —2log(L)

where K stands for the number of parameters of the model. The AIC bal-
ances model fit and model complexity and is an estimator, under fairly le-
nient assumptions, of the Kullback-Leibler divergence between the model
and the true data-generating process (Burnham & Anderson 2002). It fol-
lows that, in a comparison between two or more candidate models, the one
with the lowest AIC ought to be preferred, as that model incurs the least in-
formation loss when reality is represented using the model instead of the real
data-generating process.

Obtaining the AIC for models such as (q)CRH and (q)VRH is standard
practice; statistical packages will routinely provide these calculations. In Ap-
pendix A, it is shown how the maximum likelihood estimate can be found for
the bias model BRH. This enables direct information-theoretic model com-
parison between all five candidate models, balancing model fit and model
complexity, regardless of the fact that the BRH is not nested in any of the
other models. In the remainder of the paper, this procedure will be applied
to three datasets from two case studies from the existing literature, introduced
in the following section. On the one hand, the goal of this exercise is simply
to illustrate how an information-theoretic model selection procedure can be
applied to problems of linguistic diachrony. On the other hand, the substan-
tive question of which model is best supported in each empirical case is of
theoretical interest, insofar as these models are speaker models in the sense
sketched above and thus make ontological claims about the representation
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and use of linguistic knowledge. In this, it is crucial to bear in mind that the
five models have different complexities in the general case, and that in the
model fit/model complexity tradeoff, relatively more complex models will
have to fit the data better in order to be selected.

Once AIC values have been computed, model selection can be performed
by comparing them across the model set: the notation A(M) will be employed
to refer to the Akaike difference

9) AM) = AIC(M) — min AIC(M')
M'eM

between model M and the model that scores the lowest AIC within the entire
model set M. Note that these differences are relative to M: if the composition
of the model set changes (if models are added or removed for any reason),
so may the Akaike differences, insofar as the identity of the AIC-minimizing
model changes.

4 CASE STUDIES
4.1 Do-support

As the first case study to apply the above ideas to, I will be looking at one of
the datasets in Kroch’s (1989) original paper, originally from Ellegard (1953).
This concerns the emergence of periphrastic do in English, i.e. the replacement
of forms such as (10) by forms such as (11), both quoted in Kroch (1989: 216):

(10) How great and greuous tribulations suffered the Holy Appostyls?
(11) Where doth the grene knyght holde hym?

Kroch (1989) tracked the increase in the frequency of do-support in five lin-
guistic contexts: four types of questions, as well as negative declaratives.
These all move in concert up to about the year 1575, meaning that no evidence
was found for a difference in the slopes between the contexts in a logistic re-
gression. Kroch (1989) analyses the emergence of do-support as a reflex of the
loss of V-to-I raising of main verbs; ultimately, it is this parametric resetting
that explains the development and, under Kroch’s (1989) original CRH, the
prediction that the rates of change ought to be identical across contexts.?

2 Ellegard’s (1953) study also contains data on affirmative declaratives and on the positioning
of adverbs; both of these phenomena bear some form of relation to V-to-I raising, discussed at
length in Kroch (1989) and subsequent studies. I exclude them from consideration here—the
affirmative declaratives because they constitute a failed change and hence cannot be modelled
with the usual means of a logistic model; the adverbs because the relevant diagnostics, the
orders I-Adv-V and Adv-I-V, cannot be distinguished on the surface when the auxiliary (I)

10
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A complication of this case study is the fact that the ‘well-behaved’ nature
of the development is broken around 1575. If Ellegdrd’s (1953) data are taken
at face value, then from this point onward not only does the rate of change
slow down in each of the contexts, it also varies from context to context. Kroch
(1989: 232-237) suggested a theoretical analysis of this perturbation, relating
it to a major restructuring of the grammar; Warner (2005), however, argued
that the perturbation was due to sociolinguistic and register effects, and that
the vernacular is likely to have followed a simple trajectory.® On either analy-
sis, Ellegard’s (1953) data after 1575 must be analysed separately from those
before 1575. I thus follow Kroch (1989) in excluding the data after 1575. The
set of data constituted by the pre-1575 tokens will be referred to as dataset K1
in what follows.

At the same time, the dataset when taken in its entirety constitutes a use-
ful negative test case. Since legitimate reasons (either grammatical or extra-
grammatical in nature) exist for not regarding the full data as reflecting a
single and simple development, we would not expect the full dataset to con-
form to the predictions of the CRH. In other words, any model of constancy
of rates of change should return this dataset as a true negative. I will refer to
the full dataset as K2 in the following.

4.2 Word order: from OV to VO

The second case study comes from Pintzuk & Taylor’s (2006) analysis of the
change from OV to VO order in Old and Middle English, the replacement of
forms such as (12) by forms such as (13), both quoted in Pintzuk & Taylor
(2006: 258):

(12) 3ef 3¢ habbed ani god  don
if you have any good done

‘if you have done any good’

(13) fordon pe  he scal agzein 3euen awiht
for  that he shall again give something

‘for he shall again give something’

This is one of just a handful of studies to have appeared in the literature on
constant rates that uses the CRH as part of a logic of refutation: drawing on
historical corpora, Pintzuk & Taylor (2006) produce evidence that the rate

is missing, and hence second-order estimates of underlying orders not deducible from the
surface form are required to carry out the analysis (see Kroch 1989: 225-232).

3 For detailed discussion of the complexities involved here, see Ecay (2015: 88-93). For an alter-
native curve-fitting approach, see Vulanovi¢ & Baayen (2007).

11
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CRH VRH BRH CRH qVRH
KI 000 752 829 119 756
K2 16939 140.19 18458 21.82  0.00
PT 11321 7507 4516 9742  0.00

Table 2 Akaike differences A(M) for five models fit to the datasets K1, K2
and PT. Models with A(M) < 2 shaded.

of replacement of OV by VO is not identical in three contexts: phrases with
positive objects, negative objects and quantified objects. The authors take the
variable rates of change as evidence for the position that different syntactic
derivations are responsible for observed surface word order in the three con-
texts; the details of this are discussed in greater length in §6. At the outset,
the expectation then is that of the five models examined in the present paper,
either the VRH or the qVRH should be favoured for this particular dataset. I
refer to these data as dataset PT in what follows.

5 Resurrs

Table 2 shows the results of applying the five models introduced in §2 to the
three datasets introduced in §4.* Conventionally, a model M is thought to
have substantial support if its Akaike difference A(M) to the best model is
not greater than 2; some support if 2 < A(M) < 10; and little to no support
if A(M) > 10 (Burnham & Anderson 2002). Following these (somewhat ar-
bitrary) guidelines, the picture that emerges from Table 2 is clear: the CRH
and qCRH models far outperform the others with the do-support dataset K1,
while the qVRH is by far the best candidate for datasets K2 and PT.
Interpretation of these results is challenging, however, because interpre-
tation of the models themselves is problematic: as was emphasized in §2, it
is not clear whether the CRH and VRH models can be taken ontologically
as speaker models, and the same problem applies, but compounded by the
presence of the additional quadratic term, to the qCRH and qVRH models.
The slope coefficient of the logistic function has the relatively unproblematic
meaning ‘rate of change’, and it may even be possible to argue that speakers

4 The raw AIC values, maximum likelihood estimates and estimated model parameters, along
with all code necessary to replicate the analyses, are available to download from https://doi.
org/10.5281/zenodo.7734357.
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CRH VRH BRH CRH qVRH
KI 000 760 829 191 12.68
K2 16552 13631 180.71 17.95  0.00
PT 11321 7507 4516 9742  0.00

Table 3 Akaike differences A(M) for five models fit to the datasets K1,
K2 and PT, regressed on un-standardized time covariate. Mod-
els with A(M) < 2 shaded.

have internalized representations of such quantities, as work on momentum-
based change and age vectors has proposed (Labov 2001, 2010, Stanford, Sev-
erance & Baclawski Jr. 2014, Stadler, Blythe, Smith & Kirby 2016, Bermudez-
Otero 2020, Holmes-Elliott 2021). But it is far less clear what the quadratic
terms in the qCRH and qVRH models might mean. It is unclear what the sig-
nal they represent may be, how speakers are able to tap into this signal, and
how speakers are able to represent these quantities as part of their knowledge
of language.

A significant conceptual challenge arises also from the fact that the qua-
dratic ? is symmetric about the origin t = 0. If the time variable is stan-
dardized (z-scored) before the regression, as is customary practice and as
also applies to the results in Table 2, both negative and positive times will oc-
cur in the covariate. This implies that the effect of the quadratic term will be
not just nonlinear but also nonmonotonic: greater at the most negative times,
then diminishing and passing through zero at the origin, and again increas-
ing towards its maximum at the most positive times. It is unclear, on concep-
tual grounds, why this behaviour should be expected: nothing about either
linguistic theory or our understanding of population dynamics predicts this
kind of effect.”

Standardizing the time variable is not compulsory, of course. Table 3 dis-
plays the model comparison after regressions conducted on raw, un-standard-
ized time (in the case of the specific datasets here, no negative times occur
in the raw times). Interestingly, the broad shape of the results remains un-
changed: models CRH and qCRH compete to be the best model of dataset

5 These remarks are not meant to imply that quadratic or other higher-order terms can never
be used in regression models, but rather that they are subject to the same epistemological
requirements as any other model terms: their inclusion must be justified by a priori theoretical
reasons rather than for reasons of ad hoc improvements in model fit.
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CRH VRH BRH
K1 000 752 829
K2 2920 0.00 44.39
PT 68.056 2991 0.00

Table 4 Akaike differences A(M) when the model set consists of the three
models CRH, VRH and BRH. Models with A(M) < 2 shaded.

K1, while model qVRH is clearly the winner in the case of datasets K2 and PT.
Thus, the quadratic models perform well whether the effect of the quadratic
term is monotonic or not. This is arguably an unwelcome result, as it implies
that the model does not make a specific prediction about the expected shape
of that effect.

If the quadratic models are left out of the model comparison, the results
in Table 4 emerge. Each dataset is favoured by a different model: the classical
CRH model represents the best model of the do-support data K1, the VRH
model is best for the extended do-support data K2, and the BRH model is se-
lected for the word order dataset PT. In the following sections, I will attempt
to argue that this outcome is the most consistent with our current understand-
ing of the different models as well as with the specifics of these three datasets.

6 DISCUSSION: PARTICULAR

The above observations raise a number of points for discussion. I shall begin
with remarks particular to the word order case study, attempting to explain
the unexpected result that the BRH model is favoured over the VRH in this
case. Remarks of a more general nature follow in §7.

Kauhanen & Walkden'’s (2018) BRH was intended as a mechanistic model
of Kroch’s (1989) original statement: something that derives the CRH, or
something like it, from first principles. On the other hand, Pintzuk & Tay-
lor (2006) show that, in the passage from OV to VO order over the course
of the history of English, positive, negative and quantified objects attest non-
identical rates of change. Why is the BRH model then selected by the infor-
mation-theoretic model selection procedure over the VRH model in this case
(Table 4)?

Although Pintzuk & Taylor (2006) show that the word order case study
does not conform to the predictions of the CRH, they do not claim the deriva-
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tion of surface word order in one context to be entirely independent of that in
another. In fact, the change is ultimately explained by competition between
the two options of a head-finality parameter in the base grammar. Paraphras-
ing Pintzuk & Taylor (2006: 264-265):

(14) a. There is underlying competition between head-final and
head-initial VPs in the base component of the grammar. These are
called the OV grammar and the VO grammar, respectively.

b. However, the OV grammar has an optional rule that postposes the
object, moving it rightward of the verb.

c. Similarly, the VO grammar has an optional rule that preposes the
object, moving it leftward of the verb.

d. Finally, different contexts allow postposing and preposing at
different (but constant-in-time) rates.

Put together, these statements allow the derivation of the two surface orders
(OV and VO) in two different ways—either the order is base-generated (15—
16) or it follows from an application of preposing or postposing (17-18):

(15) S Aux [yp O V]
(16) S Aux [yp V O]
(17) S Aux O; [yp V t;]
(18) S Aux [yp t; V] O;

Furthermore, since the preposing and postposing rules are assumed to apply
in the different contexts (positive, negative and quantified objects) at different
rates,® differences in the historical trajectories of surface word order in the
three contexts are expected to arise.

On reflection, these assumptions fit the BRH model exactly. If P(t) in
equation (6) is taken to refer to the underlying probability of head-initial VPs
(i.e. base VO grammar), acquired by speakers as part of the ordinary process
of first-language acquisition for instance by way of a variational-learning-type
mechanism (Yang 2002), then the biases b, can be thought of as combined

6 Some of these rates may be zero: in fact, Pintzuk & Taylor (2006) argue that negative objects
never postpose and that positive objects likely never prepose. This is immaterial to the general
argument being made here.
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preposing—postposing rates’ for the three contexts, applied by speakers op-
tionally and probabilistically: each bias parameter b, provides the amount by
which the underlying probability of VO gets either boosted or diminished in
context c. If, moreover, these biases are constant over time (see Pintzuk &
Taylor 2006: 262-263 for evidence that they are), we have the BRH model.

7 DiIscuUSSION: GENERAL

In this paper, I have studied the CRH using an information-theoretic model
selection technique (calculation of the AIC following likelihood maximiza-
tion), with respect to three datasets. Linguistic considerations suggest that
the CRH ought to be selected for one of these datasets only. This prediction
was borne out: Kroch’s (1989) original CRH turned out to be the best model
for Ellegard’s (1953) do-support data prior to 1575 and excluding the con-
text of affirmative declaratives (dataset K1). When data points after 1575 are
included (dataset K2), the CRH is no longer the best model. These conclu-
sions are not surprising—they are perfectly in line with Kroch’s (1989) orig-
inal study. The model selection procedure here adopted has, however, the
added benefits of not being vulnerable to earlier criticisms of the CRH as the
null hypothesis of a statistical significance test (Paolillo 2011), and of taking
both model fit and model complexity into account when competing models
are compared.

The word order dataset PT is interesting for a number of reasons. Pintzuk
& Taylor (2006) predicted the CRH not to hold for these data, on the hypoth-
esis that word order for phrases containing positive, negative and quantified
objects is, or can be, generated using different derivations. At the same time,
they assume the underlying change to be explained by competition in a head-
finality parameter. Above, it was shown that these assumptions form an in-
stance of Kauhanen & Walkden'’s (2018) BRH, originally intended as a mech-
anistic model of the CRH. Empirically, the best model for the PT dataset (out
of the five models here considered) is either the BRH or Kallel’s (2007) qVRH
with variable slopes and quadratic coefficients, depending on whether we be-
lieve the latter ought to be included in the candidate set (see below). The CRH
model, however, finds little support here. This implies a puzzle: if the BRH
was supposed to give a foundation for the CRH, why does it perform so well
with dataset PT (where the CRH fares badly) and so badly with dataset K1
(where the CRH fares well)?

7 In the simplest case, each b, would be a linear combination of a preposing rate «, and a post-
posing rate w,; proper empirical exploration of this hypothesis is beyond the scope of the
present paper.
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I have argued that, in the ideal case, the models we use to explain pro-
cesses and patterns of linguistic diachrony should be speaker models rather
than just statistical models. By this I mean that these models need to have
characteristics of what are sometimes termed mechanistic models in the philo-
sophical and statistical literature (Lindsey 2001, Craver 2006, Baker, Pefia,
Jayamohan & Jérusalem 2018): they must describe entities, interactions and
processes which explain, by deductive inference, the observed phenomena.
In linguistics, such a model would normally have terms referring to the rep-
resentation, processing and use of knowledge of language. I have argued
that the BRH is interpretable in this way: the underlying probability P(t) in
equation (6) can be derived independently using a formalism such as vari-
ational learning (Yang 2002), while the biases b, can be interpreted as con-
stant signed probabilities which filter the speaker’s underlying knowledge in
language use, again derivable independently, at least in principle, in differ-
ent ways depending on what the linguistic contexts involved in the change
are (for details, see Kauhanen & Walkden 2018). It is less clear whether the
terms involved in the other models (CRH, VRH, qCRH, qVRH) have similar
interpretations. If not, then we ought to attempt to derive these models from
some underlying mechanistic model, such as the BRH. The model compar-
isons here with respect to dataset K1 suggest, however, that the BRH, while
offering a good account of the OV to VO change, may not be the best speaker
model in every case in which constancy of rates of change is expected.

Much work on the CRH and other hypotheses in language variation and
change has traditionally set out with the strategy of formulating two statis-
tical models—one null and one alternative—and proceeded to demonstrate
that one or another effect, covered by some term of the alternative model, is
or is not real. To the extent that interpretability and parsimony are important
goals, this framework is somewhat unsatisfactory. Particularly when only one
dataset is being explored (and this is the normal situation in most studies),
introduction of new model parameters and hence added model complexity
carries a substantial danger of overfitting. Methods such as the information-
theoretic model selection procedure here adopted can be used to safeguard
against these problems to some extent. They are no panacea, however. Impor-
tantly, models with dubious interpretability should not be allowed to enter
the set of candidate models in the first place—in the general case, nothing
about the statistical methods per se can help to solve problems of the identifi-
cation of candidate models, the interpretation of model parameters, and the
threat of data dredging (for extended discussion of the challenges involved,
see Burnham & Anderson 2002).
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It is important to underscore the philosophical aspects of this way of ap-
proaching the explanation of empirical phenomena. Crucially, the use of an
information-theoretic model comparison method such as the AIC does not
tie the researcher to assuming that the set of candidate models contains the
“true” model, or into expecting that application of the method will result in
simple decisions about whether one or another model is “significant” in some
sense. Rather than trying to reject a particular model cast as the null hypoth-
esis of a statistical test, we are asking which model, out of a set of theoretically
motivated candidate models, yields the best and most parsimonious descrip-
tion of the information contained in the data. One tangible benefit of this
approach, in comparison to null hypothesis testing, is that the resulting mea-
sures (here, Akaike differences) quantify the relative merits of the competing
models. By contrast, failure to reject the null hypothesis of a CRH in a classical
null hypothesis statistical test gives us no idea of how much more confidence
we ought to have in the CRH model relative to its competitor (the VRH).

These remarks notwithstanding, it must be acknowledged that measures
such as the AIC do have their limitations. One of these concerns the way such
measures equate model complexity with the number of model parameters. It
seems clear that different parameters in different models may be doing differ-
ent amounts of work, so that two models, while having identical degrees of
freedom, may yet be rather unequally flexible in terms of the families of data
patterns they predict. Ultimately, one would wish a measure of model com-
plexity to somehow take the functional form of the model into account (Wa-
genmakers, Ratcliff, Gomez & Iverson 2004). It will be observed (see again
Table 1) that the VRH, BRH and qCRH models, in particular, have identical
Akaike complexities (identical numbers of parameters) if the number of con-
texts involved in the change is m = 2. Moreover, the BRH and qCRH models
have identical Akaike complexities for any m. This means that teasing apart
these models, especially when m = 2, will be difficult on a measure such as
AIC. Alternative techniques for assessing model complexity and carrying out
model selection, for instance by way of bootstrapping and cross-fitting (Wa-
genmakers et al. 2004) or by way of leave-one-out cross-validation (Vehtari,
Gelman & Gabry 2017), are available. These methods incur greater computa-
tional challenges than the use of ‘classical” information criteria. Nevertheless,
their application to historical linguistic datasets ought to be explored in future
work.

The case studies explored in this paper were selected on the basis that
the historical developments they describe are relatively well-understood. The
sort of approach I have sketched here should, naturally, be replicated using
other datasets. Historical linguistic data are notoriously quirky and come
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with a lot of uncertainties about the dating or geographical origin of texts,
for instance. The scale of these problems is still essentially unknown, in the
sense that we know little about how the statistical methods used to compare
competing models are affected by data deficiencies of this kind. More simu-
lation work is needed to address these questions, as is work extending the ca-
pabilities of models such as the BRH, for instance in the direction of inclusion
of random effects, which would be useful in modelling certain kinds of vari-
ability and complex dependencies often attested in empirical datasets.® An-
other potentially useful way of handling the problem of idiosyncratic datasets
would be to carry out a study similar to the one reported in this paper on a
much larger database of case studies; this would further help to separate the
signal from the noise.

Ultimately, more conceptual work is needed to understand why something
like the CRH should hold, assuming it does. It has often been remarked (e.g.
Postma 2017) that the CRH serves an important role as a linking device be-
tween I-language and E-language—that is to say, between mental represen-
tations on the level of the individual and language use on the level of the
population, as recorded in corpora or other data sources. In fact, as stressed
in §1, the CRH is one of only a handful of nomothetic statements in historical
linguistics—in other words, a universal proposition that applies to a class of
phenomena, rather than a descriptive statement about particular changes or
historical contingencies. This is significant, whether or not the CRH turns out
to be true: the crucial matter is simply that, as a nomothetic statement, the
hypothesis makes predictions and thereby allows us to test not only the hy-
pothesis itself but also a number of other, related predictions (for a recent
example of this logic of inquiry, see Simonenko et al. 2019).

If the CRH is operationalized as a pure statistical model, as has been the
practice in much work to date, then the connection between I-language and
E-language necessarily remains somewhat nebulous. On the other hand, if
a mechanistic model of the speaker is used to derive a population-level pat-
tern, problems of a wholly different nature appear. Namely, it is at least an
empirical possibility that whatever mechanism we suppose to exist in speak-
ers is simply undetectable at population level, due to masking effects arising,
firstly, from data deficiencies of the kind discussed above, and secondly, from
the stochastic nature of population dynamics itself. One potential way out of
this conundrum would be to show (mathematically) that such effects cancel
out in the big picture, resulting in nothing but stochastic noise which can be

8 Inclusion of random effects is straightforward, in a technical sense, in the case of the other four
models. However, the relevant variables (such as text identifier or author) are often missing
from the data. This also applies to the versions of the datasets reported in this paper that were
available to me.
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teased apart from the underlying signal using statistical methods. But it is
far too early to say with any confidence how the complex, interacting dynam-
ics of language change will pan out in this regard. This demonstrates that
ample room exists for continued investigation of the I-language-E-language
connection, whether that be in the form of the classical CRH or some other
characterization of that connection.
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A LIKELIHOOD FUNCTIONS

Models are fit using the method of maximum likelihood, i.e. by finding (an
estimate of) the vector of parameters that maximizes the probability of the ob-
served data, given the model. This requires knowledge of the (log-)likelihood
functions and their gradients (first partial derivatives).’ In this appendix, I
show how these can be computed for the five models considered in this pa-
per. It is not possible to find the maxima analytically, as it is not possible
to solve the roots of the relevant gradient equations analytically; the maxima
must therefore be approximated numerically by making use of the form of the
likelihood function and its gradient, starting from an initial parameter guess.
The algorithmic details of this optimization are outlined in Appendix B.

A.1 General remarks

Each of the five models considered here assumes that nature generates data
following a Bernoulli process with success probability p, the exact form of this
probability function depending on the model. Accordingly, the likelihood of
the data, given a model, is the following function of the model’s parameter
vector 6:

(19) L) =[[pla-pnt,
i=1

where 1 is sample size, each data point is of the form (t;,c;, y;), where t; is
time, ¢; indexes context (from 1 to m, the total number of contexts), and y; is

9 Although the gradients are not particularly difficult to derive for the models here considered,
this task may be laborious or impossible in the case of other models. In such cases, the same
general model-fitting framework can still be used, as long as a derivative-free optimization
routine is used instead. In R, the dfoptim package (Varadhan, Borchers & Bechard 2020) pro-
vides a number of such routines.
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the value of the dependent variable (1 or 0). The form of p; depends on the

model as follows:!?
1
(20) P T Fexp(—(st + k,)) (CRH)
21 = ! (VRH)
1) P T exp(— (st + ko))
1
(22) pi (qCRH)

T T+exp(—qE2 + st + k)

1
23 , = VRH
(23) i =1 + exp(—(qe, 12 + 5.t + k¢,)) (q )
pi =P+ 0P (1-P))
b 1
(24) T 1T+exp(—(st; +k)) (BRH)

2

oi=-1+ 1+ exp(=b,)

Since in the case of the BRH the bias parameters have the strict lower and
upper bounds of —1 and 1 (Kauhanen & Walkden 2018), the sigmoid o; is
here employed to map unbounded reals bci to the interval (—1, 1); this techni-
cality is adopted so that the parameters can be optimized without specifying
bounds for the optimization.

The parameter vector f is

>

i. 0= (91,...,9m+1) = (S,kl,...,km) (CRH)
ii. 6=(0y,...,00,,) = (51,5, k1, ..., k) (VRH)
iii. 6= (6y,...,0,40) = (q,5,k1, ..., k,,) (QCRH)

1v.

™y

= (911""93111) = (ql,...,qm,sl,...,Sm,kl,...,km) (qVRH)
(61, e, 8p12) = (5,k, by, .., byy) (BRH)

13

V.

10 This p, is of course a function of the parameters é; I suppress the argument for reasons of
indolence and legibility. The same remark applies to the functions P; and ¢; in the case of the
BRH.
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where m denotes the total number of contexts.
As usual, it is easier (and more numerically stable) to work with the (nat-
ural) logarithm of the likelihood:

(2) U6) :=logL(B) =log [ [p¥' (1 —pp)' ¥
i=1

Il
M:

[logpy’ +log(1 —pyt= Yil

N
Il
—_

Mx

[]/z 1ngz + (1 _yl) 1Og(1 _pz)] .

-
Il
—_

For the gradient of the log-likelihood function,

5 0 0 -
(26) vi(d) = (a—gluw gKew)),

where K is the length of 6, we then have

(27) = Z (%89 logp; + (1 — yl)az log(1 — ))
L (y; 0 1-y; 0
:;(;Ta_ o)
S d
= ; ( ) 26,
so computing the gradient in each case reduces to the problem of evaluating
dp;/9b;.

In the calculations to follow, it will be useful to have a concise way of
referring to contexts other than the one that applies to a given data point i.
Recall that c; will be used to refer to the context that does apply to the ith data
point; I will then employ the notation c_; to refer to any other context. Thus
suppose there are m = 3 contexts in total, for example, and that ¢; = 1. Then
the symbols k.. and s._, refer to the intercept and slope of either the second
or third context. Similarly, b, . would refer to the bias parameter in either the
second or the third context in the case of the BRH.

A2 (q)CRHand (q)VRH

The gradient of the simple logistic regression model is of course well-known
(see e.g. Hosmer, Lemeshow & Sturdivant 2013). For the sake of complete-
ness, I will nevertheless complete the derivation for the qVRH here. The re-
sults for the qCRH, CRH and VRH models follow as special cases.
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Write x; = g, 17 + s, t; + k, for brevity. Applying well-known properties
of the differentiation of logarithms and exponentials, as well as the quotient
rule, we have

(28) J 0 1
39]p1 - 89] 1 + eXp(—xi)
! 911+ exp(—1))]
=— C— exp(—x;
(1 + exp(—x;))% 99, P
0
—_2. 2 .
= —p; 89j[1 + exp(—x;)]
= p? exp(—x )ix
= Py exp(=%; 96, ir
i.e.
29 i ! (—x;)
(29) 89]~pi —PitTy exp(—x;) P 89]-xi
_ exp(=x;)  d
=P g +exp(—x;) 26;™"
B 1 0
=P TY exp(x;) BHjxi
=p;(1—p;) aejxf‘
Thus
d oz (¥ 1-vyi) 9
30 — (@) = <———)— :
N -p)-A-yip; 0
S LT Ay Mgy
1 0
=2 [yl =p) — A = ypil=x;
i=1 ]
with
2 if 6 = qc,
a _ > _ ti if 9] = Sci’
G a_f’fxi - a_"f(qcit" *oatithe) = 1 ifg; =k,

0 otherwise.
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A.3 BRH

Let P; = P;(1 — P;) and x; = st; + k. For the BRH we now have

9, . 2 9 9 9
0" = %0, ae,[”f@f] 0, +‘7139@ +p’ae

(32)

using the product rule. Now clearly

0 0 0
(33) aTclpl = inqcfi and _abc_’_ pi =0
On the other hand,
34 J _ 0 1+ 2
(34) ob.. i = ob,. 1+ exp(=b,)
_> 0 1
~ Tob., 1+ exp(=b,,)
- 9 11+ exp(~b,)]
= . exp(—
(1 +exp(—b, )2 b, P
2exp(—b,)
— (14 exp(=b, )2
Thus
0 2exp(—b,.
(35) { PP

.77 A+ exp(—b, )2
Then let Oj € {s,k}. Now

0 d 0

(36) a_ejpi = 8_(9]~Pi + Uia_gj

D,

Kauhanen

The first term was already computed in §A.2, so let us focus on the second.

Since P; = P;(1 — P;), we can again make use of the product rule:

37 aQ*D—Pa(l PHy+(1-P aP
(37) 36, '~ iam, i+ )5g,"
Now
38 o 1-P) = aP
(38) 55,1 =P =~ P
so that

0 a 8 0
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All in all,
40) J —aP 1-2P aP—l 1-2P aP
( a_ejpi_a_eji‘i‘ai( - i)a_gji—[ +0oi(1 = z‘)]a_gj i
From §A.2,
0 20 d
(41) a_ejpi = P;(1- Pz‘>a_9jxi = @z’a—ejxi-
Hence
42 A Pi1 1-2P i
(42) 8—9]_791' =Pl +o00- i)]a_gjxi-
Finally,
) ) J d

(43) =N = g“ti +k)=t; and i = ﬁ(sti +k) =1
Therefore

0

a—Pi = Bi[1+0;(1 =2P)1t;
(44) ;

Putting everything together, we arrive at the gradient of the log-likelihood
function for the BRH:

dJd 2 (i l1-y;
(45) =5-U0) = <— - )Pi(l_Pi)Bi
d0; 1; pi 1-p;
with
1 (1 —2P; if 6. =
(46) B, = + oy( D) if0; =k,
2exp(=b.)/(1+ exp(—bci))2 if 6, = b,

B OpriMmizAaTION

Once the likelihood function and its gradient are known, maxima can be
found using a numerical optimization procedure. Here, the Broyden—Fletcher—
Goldfarb-Shanno (BFGS) quasi-Newton method, implemented in the optim
function of the R statistical computing environment, version 4.0.4 (R Core
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Team 2021), was used. Initial values for the slope and intercept parameters
were obtained for each model by first fitting a simple logistic using R’s glm
function. Fitting was repeated 10 times for each model-dataset combination
in an effort to mitigate the potential problem of convergence to local optima,
adding a small amount of noise to the initial values on each run. The ini-
tial values for the bias parameters in the BRH and the quadratic terms in the
gCRH and qVRH models, however, were set to 0 as this turned out to best
guarantee convergence of the optimization. The run that returned the max-
imal maximum likelihood estimate was retained for analysis. All optimiza-
tions reached numerical convergence.

For consistency, BEGS was used for each of the five models, but the CRH,
qCRH, VRH and qVRH models were additionally also fit using R’s default
implementation for generalized linear models (glm) as a sanity check. The
absolute value of the difference between the BFGS maximum likelihood es-
timate and the maximum likelihood estimate from glm was less than 107°
in each case, i.e. identical up to the sixth decimal.!! While this says nothing
about whether BFGS tends to converge to global rather than merely local op-
tima of the likelihood function in case of the BRH model, the high correlation
does imply that use of this algorithm does not lead to less optimal estimates in
the case of the models which can also be fit using generalized linear methods.
Since the shape of the likelihood surface of the BRH model is essentially un-
known, this is the best we can do at the present moment without launching
into a lengthy technical treatise; future work should explore the likelihood
surface in more mathematical detail.

All code required to replicate the analyses can be obtained from https:
//doi.org/10.5281/zenodo.7734357. Under the hood, the code calls routines
provided by the cre2 R package, version 0.1.1, which implements the above
log-likelihood and gradient calculations. Development versions of this pack-
age are available at https://github.com/hkauhanen/cre2.

C NOTES ON DATA SOURCES

Datasets K1 and K2 were taken from Table 3 in Kroch (1989), with percent-
ages transformed into absolute frequencies (categorical responses), round-
ing when necessary. K1 contains only the subset of data up to 1575. The time

11 Regressing the log-likelihood values pooled across all models and datasets against each other
using an ordinary linear model, the resulting slope coefficient estimate is § = 1, with a stan-
dard error of 2.3 x 10711, + = 4.4 x 10'°, p < 2.0 x 1074, In other words, the maximum
likelihood estimates are identical for all intents and purposes, with the remaining difference
probably explained by different convergence tolerances implemented in the optimization al-
gorithms.
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variable corresponds to the midpoint (arithmetic mean) of the two end points
of each time period given in the source, z-score-standardized (except for the
results in Table 3, which employed raw time midpoints).

Dataset PT was taken from Table 11.9 of Pintzuk & Taylor (2006). This
study uses the Helsinki Corpus periodization for texts; since the earliest texts
(those labelled ‘OE1” in Pintzuk & Taylor 2006) cannot be dated with any ac-
curacy, [ have left them out of consideration here. Five periods remain for the
regressions, corresponding to date ranges 950-1150, 1150-1250, 1250-1350,
1350-1420 and 1420-1500; these correspond to original rather than manuscript
dates in the Helsinki Corpus. Again, date range midpoints were used for the
time variable in the regressions, z-scored apart from the regressions reported
in Table 3.
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